Wetware computer
A wetware computer is an organic computer (which can also be known as an artificial organic brain or a neurocomputer) composed of organic material "wetware" such as "living" neurons. Wetware computers composed of neurons are different than conventional computers because they use biological materials, and offer the possibility of substantially more energy-efficient computing. While a wetware computer is still largely conceptual, there has been limited success with construction and prototyping, which has acted as a proof of the concept's realistic application to computing in the future. The most notable prototypes have stemmed from the research completed by biological engineer William Ditto during his time at the Georgia Institute of Technology. His work constructing a simple neurocomputer capable of basic addition from leech neurons in 1999 was a significant discovery for the concept. This research was a primary example driving interest in creating these artificially constructed, but still organic brains.
Organic computers or Wetware is a future technology that replaces the traditional fundamental component of a central processing unit of a desktop or personal computer. It utilizes organic matter of living tissue cells that act like the transistor of a computer hardware system by acquiring, storing, and analyzing information data. Wetware is the name given to the computational properties of living systems, particularly in human neural tissue, which allows parallel and self-organizing information processing via biochemical and electrical interactions. Wetware is distinct from hardware systems in that it is based on dynamic mechanisms like synaptic plasticity and neurotransmitter diffusion, which provide unique benefits in terms of adaptability and robustness.