Pikromycin
| Names | |
|---|---|
| IUPAC name
(3R,5R,6S,7S,9R,11E,13S,14R)-14-Ethyl-13-hydroxy-3,5,7,9,13-pentamethyl-6-[3,4,6-trideoxy-3-(dimethylamino)-β-D-xylo-hexopyranosyloxy]-1-oxacyclotetradec-11-ene-2,4,10-trione | |
| Systematic IUPAC name
(3R,5R,6S,7S,9R,11E,13S,14R)-6-{[(2S,3R,4S,6R)-4-(Dimethylamino)-3-hydroxy-6-methyloxan-2-yl]oxy}-14-ethyl-13-hydroxy-3,5,7,9,13-pentamethyl-1-oxacyclotetradec-11-ene-2,4,10-trione | |
| Other names
Picromycin | |
| Identifiers | |
3D model (JSmol) |
|
| ChEBI | |
| ChemSpider | |
PubChem CID |
|
| UNII | |
CompTox Dashboard (EPA) |
|
| |
| |
| Properties | |
| C28H47NO8 | |
| Molar mass | 525.683 g·mol−1 |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Infobox references | |
Pikromycin was studied by Brokmann and Hekel in 1951 and was the first antibiotic macrolide to be isolated. Pikromycin is synthesized through a type I polyketide synthase system in Streptomyces venezuelae, a species of Gram-positive bacterium in the genus Streptomyces. Pikromycin is derived from narbonolide, a 14-membered ring macrolide. Along with the narbonolide backbone, pikromycin includes a desosamine sugar and a hydroxyl group. Although Pikromycin is not a clinically useful antibiotic, it can be used as a raw material to synthesize antibiotic ketolide compounds such as erythromycins and new epothilones.